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Divided differences are important in connection with interpolation
problems. For polynomial interpolation they may be defined by the
recurrence formula

[xo 1 f1 = flxp)

[xl o0ty Xy If] - [xo yeers Xm—1 ]f] .
Xm — Xp

M

(X0 5ees X 1 f]1 =

We assume that the knots x; ,..., x,, are all different. An explicit representa-
tion is
V ( po 3eeey pm—l 9f )

X0 seers Xm—1 s Xm @)

v (Po soees Pme1 s Pm)
X0 50005 Xm—1 > X

[xl) seres Xy ‘f] =

where the right-hand side is a quotient of two determinants of the form

Joxo) -+ fol¥m)

V(fo""’f;");z det fi(x,) = | :
Solxe) Sl

X0 seers Xm

and where
px):i=x* (i=0,1,..)

are the “power-functions.”
Basic for these ““ordinary” divided differences is the classical complete
Cebysev system (py ,..., pn). We get generalized divided differences of a
165
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166 MUHLBACH

function £, if we replace this system by an arbitrary CebySev-system (£; ..., £3.)
(complete or not),! using (2) as definition:?

V( f;) "'wfm-l sf )

X o005 Xm—1 5 Xin

v (fo s fine1 s fn ) '

Xoseers Xy s X

[fosesin 1] ®

Xg 5eees Xop

We shall prove, that the divided differences (3) satisfy a recurrence formula
in analogy to (1) which allows a simple computation.

THEOREM 1. Let ICR be an interval and m = 1. Let (fy,..., fou)s
(fo 5> fney) and (in the case m =2 also) (fy ,..., fm_s) be CebySev-systems
over I. Consider m + 1 different knots x, €I (i = 0,..., m). Then

[fos o frma lf} [fo R |f]

[fo ”fm ‘f] — X100y Xim X0 3:05 Xm—1
N R

Proof. Since the case m = | is trivial we assume m = 2. For abbreviation
let

N(f) = V( Joso S s f ) V(ﬁ) ""sfm—1)

X1 3005 X 5 X X0 5005 Xm—1

Vel ) )

‘We show that

[xfo,f.., ;{m 1] = N((fi)) “

First note that the denominator of the right-hand side of (4) does not vanish.
N(f,.) considered as a function of x, (X ,..., X;, assumed to be fixed) is
a linear combination of f ,..., f,, Which has the m zeros x; ,..., X, . It follows
from the assumption about (f; ..., fis_.) that the coefficient of f;, does not

11, p. 1): The functions (f, ..., ), f; € Cla, b], will be called a Cebysev system over

[a, b} when
V(fo 3oy fm) > 0
X0 geees Xm

for all choices of x4 < x; < *** < Xp, X; € [a, b]. The functions (fy ..., fw), f: € Cla, b},
will be referred to as a complete CebySev system, if (f; ,...,fi) is a CebySev system for
each £ = 0,..., m.

212, p. 104].
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vanish. Therefore V(f,,) cannot be the zero-function, for otherwise f,, must
be a linear combination of f; ,..., f,,.1 , a contradiction. Hence, if the knots
are all different, the denominator is different from zero.

N(f)/N(f) can be written as a linear combination of f(x,),..., f (x,.)

N(f) nm

L= a ¢
with real coefficients @, independent of f. Obviously formula (4) is true for
the special functions fj ,..., f, :3

m

kz ak.f;(xlc) = Bm,i ’ ./ = 03"" m. (5)
=0

From this, it follows that (4) is true in general. The real numbers q, are
uniquely determined as solutions of system (5) of linear equations, since its
determinant is the generalized van der Monde determinant of the Cebysev
system (f; ,..., /). On the other side, the divided difference on the left of (4)
is also expressible as a sum of the form

f(; a--"fm — &
[xo yees X ‘f] o kzaobkf(x")
where the coefficients are independent of f and hence solve system (5).
Since the solution of (5) is unique, it follows a; = b, (k = 0,..., m).

We must divide both nominator and denominator of the right-hand
member of (4) by

Y (fo ,...,fm_l) V(f” ,...,fm_l)

X1 yeres X X0 seevs X1

to obtain Theorem 1.

THEOREM 2. Lef Xy ,eeey Xjy Xjnqseees Xp QNA Vg seres Vis Visd 0eees Vi With
Xjp1 = Viggss X = Vi b€ k + j+ 2 distinct points of an interval 1
(0 < j < k). Suppose (fy ..., fes1) is a complete Cebysev system over I and
set fori = 0,..., j

awihy=[,, ot =Rk L)
Then we have
[Joo ey ] — [ J; ] = S aalfind) [ JoroTen ],

Xg seees Xp Yo s--es i=0 0 30ees Xis Viseers Vi

3 Kronecker delta.
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This generalizes a formula of T. Popoviciu [2, p. 6] for the divided
differences (1).

Proof. From (4) we get

. . Jo s frn
aul /) = anlf) - [ TN ],
Now we sum over [ = 0,..., j. In the sum of the differences a,,(f) all terms
cancel with the exception of

[fo ,m’];kk |f] _ [fo . lf]

X0 seees Yoseees Vi

Theorem 2 states a connection between the divided differences of a function
f with respect to the Cebysev system (f; ..., 1) and the divided differences
of f with respect to the “smaller” system (fj ,..., f). The following corollary
is a direct application of Theorem 2.

COROLLARY. If the divided differences of a function f with respect to
(fo s+ Jrr1) are bounded on I and the divided differences of fy,, with respect to
(f 5» f) toO, then the divided differences of f with respect to (fy ,..., fr) are
bounded on 1.

Another application of Theorem 1 deals with generalized convex functions.
Following S. Karlin and W. Studden, the functions v ,..., %, will be called
an extended complete CebySev system, provided u; € C™[a, b}, i = 0,..., m
and

pr( 1) 20, k= 0,m

xo PYRER xk
for all choices x, < x; <+ < X, X; € [@, b]. Inthe case xo = x; = - = X,
the determinant V* reduces to the Wronskian determinant W(y, ,..., uy) of
the functions vy ,..., ;. I x5 < x5 = x;05 = ** = X, < Xjp50 , WE MUSE
replace the i + 1 columns numbered j through j -+ 7 of
y (uo yeees uk)
Xg 5ees X

by the i 4 1 first columns of the Wronskian W(u,,..., u;) to obtain the
corresponding columns of

- (uo yees uk).

X0 5eees Xk
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A function f defined on the interval [a, b] is said to be convex with respect
to (uy ..., 1) if

i) =0

for all choices of x, < x; < - < x, x; € [a, b}A

THEOREM 3. Let [ be a differentiable function defined on |[a, b] and
(U ..., ) (m = 1) an extended complete Cebysev system

Uup(x) = wolx)

(%) = wix) [ wi(ty) dy
Us(x) = wo(X) fx wi(t) ftl wa(tp) diy dty
3 = wo) [ i) [ wat) [ i) dty -y

where w; € C™a, b] are strictly positive functions. Then f is convex with
respect to (U ,..., Uy) if and only if (f[ug) is convex with respect to the first
“reduced system” (Vg ..., Um_1), U; = (U 11/t0)’.

This theorem generalizes the well-known fact that a differentiable function
fis non-decreasing, convex etc. if and only if the derivative f’ is nonnegative,
nondecreasing, etc.®> A proof of this theorem where (in the case m > 2) no
use is made of the differentiability of f can be found in [1, p. 393 ff]. But it
is rather complicated, for it refers to the fact that a convex function is
endowed with substantial continuity and differentiability properties, and
as stated by Karlin and Studden [1, p. 381], “the detailed presentation of
their proofs is rather elaborate.” The following proof of Theorem 3 uses
only elementary methods.

To prove the sufficiency of the condition we factor out of

Uy geees Uy 5 | kil
V:V( 0o Hme1 ) c:= [Tulx) >0
X0 seers Xpae1 » Xom Eo o)

¢ Note the little deviation from the definitions 1.1 in [1, p. 375] or 3 in {2, p. 104].
5 For example, see [3, p. 40].



170 MUHLBACH

and subtract from each column its predecessor and expand by minors of
the first row

gol(xl) —%‘j(x.g %(xm) ~ %(xm_o
{;(xa - ;f;m) L) —{;(:em_a

Using the mean value-theorem we obtain

V=c¢- ﬁ (xi - xi_l) 7 (UO 5eees Um_a s (f/uo)’)’

Zg 5eees Zm—2 5 Zm—1

where x, < zy <Xy <zy < <z, 4 < X,. [his proves the sufficiency.
To show the necessity we consider the determinant of order m
U — U [xo gevey xm_l

Xg seves Xope1 f]

? [xq» xpl | 4p] [xo x9’ Jugl - [, xo" | U] [xo, -’fol [f] )

1 [Xmey s Xy | ] [Xmeg s Xmoa L U] o [Xmeq s Xpoet | i) X > Xinq | f]

where the divided differences are taken with respect to (u,, u;) and where
Xo < Xo <Xy <X < v < Xyt < Xy - We denote bY yo, ¥ yeeer Yomet
these points in increasing order and show

m-1

- Uy, Uy 5oy Uy
=Y a
=0 Yis Vitaseeos Viem

7 6)

with positive coefficients a; independent of f. To prove this we subtract
from each row of U its predecessor and use the recurrence relation of
Theorem 1. Expanding along the first column U reduces to a determinant
of order m — 1. Its kth row (k = 1,..., m — 1) has the form

Uy, Uy Uy, Uy
ot ) <[ [
Xk » Xi X1 s Xg—1
Uy, U Uy, U Uy, U Uy, ty
- e L L
Xi s Xi Xx—15 Xk Xi—1s Xk Xg-1 5 Xp—1
Uy, U Uy, U Uy, Uy, U
:%[ 0> u2]~[,°’1 “z]g'[,o’ 1’2,h,]
Xi oy X Xix—15 Xk Xx~15 Xk s Xg
Uy, Uy Ug , U ' Ug s Uy, U
+§[ u2]~[ IR T h;
Xy > Xi X1 5 Xp—1 Xg—1 s Xx—1 9 Xk
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where h; = w; (j = 2,..., m — 1) and A, = f. Assume for the moment that
the factors in braces are positive. Since a determinant is a multilinear function
of its columns, U can be written as a linear combination of determinants
of order m — 1 of the same form as U. The coefficients are positive and
independent of f, and the elements are now divided differences of order 2.
Treating these determinants in the same way, we get after m — 1 steps
formula (6). At the (k — 1)st step there arise coefficients of the form

uk] . [uo s Ug seeey Up—y

g[u() s Uy seees Uy
to seer Loy

13 seees b

S

with some #, < -+ < 1; from y, < *** < Yym-1; (We show below they are
positive). From (6) it follows

. Xp s X1 50000 Xy
llm U( 0,, 1’: ] :n 1
X5 X1 50005 X1

/)

= [H vo(xi')]_l . V(Uﬂ > U1 seees Um_g s (f/uo)') -

’ ’ s ’
i=0 Xg s X1 9009 Xmeg sy Xm—1

when x; — x;/ (i = 0,..., m — 1). But since v, is strictly positive this means
that (f/u,) is indeed convex over I with respect to (v ..., Up_y)-

It remains to show the coefficients (7) are positive. The following lemma
will be needed.

LeMMmA, Let 1 <k < m and define w;, = w; (i = 0,.... k — 1) and

(1) — wi(t), x Lt <b
* 0, a<t<x

Jfor some x, a < x < b, and

¢ t ths
00 = Fo(t) | Wa(t) [ W)+ [ Weln) iy iy

Then @ is convex with respect to (U ..., w;) for j = 0,..., k. Moreover

[uo,...,u,-la]§>0, x << t;, a<t0<t1<"'<t,~<b
By seres b = Q, a <<ty <<ty < <t <x
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Proof. Proof by induction: In the case k = [ the assertions are trival.
Using the following formula for k > 1

v (uo sovey Upq s ﬁ)

1o seees ey » In

_ t J,tz J.:k “EI uo(tz-)% ) V(vo sees Vg (ﬁ/uo)') dnpy *+ diy

to vt i=0 No 5o Nr—2 5> Ni—1

(see [1, p. 383]) where v; = (U1 /uy)’ (@ = 0,..., k — 2) are the functions of
the first “reduced system” of (u, ,..., 4x_y), the lemma can be reduced to the
case k — 1.

Now for any #, <1, < -+ <t, the expression in (7) is positive since
N(u) > 0. Indeed, if we choose x in #,_; < x < t, in the lemma, then

Uy 5oy Uy _]
ul >0
[to pooes e
and
[uo seery Upq ii] _ [“o yeees Up_y ﬁ] _ [uo seery Upy ﬁ] > 0.
£y youes fg sees by fy oo b

Thus N(@) > 0 and by (4), N(u,) > 0 and (7) holds.
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